Determination of prominent crustal discontinuities from waveforms of local earthquakes

Pavla Hrubcová Václav Vavryčuk Alena Boušková Josef Horálek

Institute of Geophysics, Academy of Sciences, Prague, Czech Republic

Motivation – structure from local seismicity

Waveforms bring information on source & structure

1. Method – depth & topography of discontinuities

- Passive investigation with local sources advantage
 Large amount of data ideal for stacking
 Sources far from shallow structure simpler waveforms
 Data acquisition inexpensive
- High-frequency conversions and reflections at interfaces
- Generated at shallow or deeper interfaces
- Local sources need special processing & interpretation
- Attention to focal mechanism & source-receiver geometry

2. Applications – natural swarm seismicity in West Bohemia

- Shallow structure
- Crust/mantle discontinuity Moho

West Bohemian Massif Central Europe

Increased geodynamic activity Intersection of the Eger Rift & ML fault

Local microearthquakes

WEBNET network

Swarm 2008 M_L < 3.6 22 stations , filtered 2.5-30 Hz azimuthal coverage Focal depth 7.6-11 km ~ +/- 50 m (hypo DD)

1. Local microearthquake data

Generated by weak local sources Cluster in space & time High-frequency data Sensitive to discontinuities

Interpreted phases

Converted & reflected phases PPP, SP & PS

Focus on *SP*, *PPP* phase => Z well visible & separated from P wave coda

Single-trace view

Local microearthquake data Multi-trace / seismic section view – Z component

P-wave alignment – elimination of local site effects

Individual events – P wave alignment

Goal – depths in different azimuths – process each station individually

Radiation pattern analysis

Focal sphere for direct *P* wave

SP focal sphere

Focal sphere for *SP* conversions

limited ray inclinations sin *i* = Vs2 / Vp1

Radiation pattern & synthetic tests

Data processing for stations with prominent converted phase for given mechanism

Alignment and stacking

Inversion of stacks with grid search

Upper crustal discontinuity in depths between 2-7 km

To remove local structure beneath each station calculation of *SP* relative to *P* phase

Data – swarm seismicity in WB

Individual events - P wave alignment

Results – shallow structure in WB

WEBNET network

Interface depth 6.5 km

Geological map

after Mullick et al., 2015

Moho topography from SmS reflections

Swarm 2008 High quality data, 250 Hz 3 components High frequency data

Phases used for interpretation

Moho reflected & converted phases SmS, PmP, PmS

Each station individually – lateral Moho variations

Data – SmS Moho reflections

Moho topography from SmS reflections

Ē

West Bohemia – previous investigation

Active & passive seismic investigation Receiver function

Reflection profile MVE90 & CEL09

Refraction profile CEL09

Hrubcová et al., 2005 Hrubcová & Geissler, 2009 Behr et al., 1994

Conclusions

New method to detect prominent discontinuities from high-frequency local earthquake data

- Processing of converted/reflected phases for depth of interfaces
- Natural seismicity

Tools applied

- Reflection seismics data alignment and stacking RT
- Focal mechanisms & radiation pattern analysis
- Synthetic tests with full waveform modelling with DWN
- Phase amplitude analysis
- Selection of stations & mechanisms for phase detection in data
- Inversion for depth

Prominent interfaces in West Bohemia region

- Depth and topography
- In agreement with previous investigations

Thank you for your attention !

Moho in Gros Morne National Park, Newfoundland, Kanada

Thickness of the Moho zone from SmS reflections

Thickness of the Moho zone from SmS reflections

Deepe

after Hrubcová et al., 2013